
Parallel LDA: Final Report
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu
Project ID: 28
May 9th, 2018

Summary:

We introduced parallelism to the Latent Dirichlet Allocation topic model used in text classification.
By distributing the corpus, running local sampling, and synchronizing updates with message pass-
ing, we achieved a maximum speedup of 9x compared to the sequential version. We demonstrated
that our parallel LDA implementation had good performance both in terms of speedup and in
terms of the objective function. We also implemented a few different variations of parallel LDA
and compared their performances.

Background:

Describe the algorithm, application, or system you parallelized in computer science
terms.

Text classification has always been an interesting topic of discussion in the field of machine learn-
ing. However, the massive data sets have always been a big challenge in text classification - each
document might contain a big number of words already and there might be millions of documents
in a big corpus. The training process usually requires a large number of iterations of parameter
learning as well. The computation power needed is huge.

Latent Dirichlet Allocation is a widely used algorithm in text classification. The LDA topic model
clusters word occurrences into latent classes (i.e. topics). LDA calculates the topics of each word
based on different class distributions over each document, and Gibbs sampling has been widely
used for parameter learning in LDA.

What are the algorithms inputs and outputs?

Latent Dirichlet Allocation takes in a set of D documents as its input, where each document contains
a set of words (usually in the form of numerical labels of the words). In addition to the documents
needed for training, LDA also needs the number of topics to classify the corpus into, the number
of iterations to train for, and the values of alpha and beta parameter which are used for smoothing
during training.

Because LDA is a method of unsupervised learning, it does not need the true labels of the input
documents. While the total number of documents and unique words may be obtained through
a traversal through the training documents, it is often useful and more efficient to have these 2
numbers ready as additional inputs to the LDA algorithm as well.

1



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

After a certain number of training iterations, LDA will get an assignment of topic on each word
in each document (the same word in different documents might be assigned with different topics),
and based on that, output a table of most frequent words in each topic. For evaluation purposes,
the objective function - log likelihood may also be computed and output either after each iteration
or when the entire training process is over.

What are the key data structures?

The key data structures needed in LDA are the four parameters learned in the model - four different
tables used to store different distributions and counts during Gibbs Sampling. Let D denote the
number of documents, W denote the number of total number of unique words in all documents,
and T denote the number of topics (classes) to train for. Then, the 4 tables used in LDA with
Gibbs Sampling are:

2



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

• Document-Topic Table (docTopicTable) of size D ∗ T

• Word-Topic Table (wordTopicTable) of size W ∗ T

• Topic Table (topicTable) of size T

• Document-Word Topic Assignment Table (z) with the same dimensions as the input corpus
(each word in each document gets assigned to a topic; thus the table has size W’, where W’
is the total length of all documents in the corpus).

All 4 tables are implemented using C integer arrays. The Topic Table is a straightforward 1-D array
of length T . Both the document-topic table and word-topic table are implemented as a 1-D array
but with 2-D indexing. Lastly, while the document-word topic assignment table (z table) could be
implemented as an array of size D ∗ W , lots of memory would be wasted in this implementation
because most training documents will not contain all unique words that appear in all the docu-
ments, and words that do not appear in a document will never be used in the z Table. Moreover, D
and W could be huge numbers, especially in large-scale text classification. Thus, we used a similar
data structure as the representation of graphs in the GraphRats assignment, where our z table is
a 1-D array of size W’ and we have another array of size D that documents the starting index of
every document in the z table array. This way we greatly reduce the amount of memory allocated
for the z table.

What are the key operations on these data structures?

The key operation on the four tables described above is the Gibbs sampling process. In each
iteration, we loop through every word in every documents in the training data. For each word,
we obtain the current topic assigned to the word in the document by looking up the word in the
z table. Then, we calculate a multi-nomial distribution of the posterior probabilities using the
current probabilities, the smoothing parameters alpha and beta, and counts for this word, and
then randomly sample a new posterior topic. At the end, all 4 tables decrease the counts related
to the current word with its previously assigned topic, and then increase the counts for the word
with its newly assigned topic. Thus, while the sampling process involves more complex operations
such as multiplication and divisions, the key operation on the 4 tables are mostly additions and
subtractions.

What is the part that computationally expensive and could benefit from paralleliza-
tion?

Similar to most text classification algorithms (and machine learning algorithms in general), LDA
has characteristics that give space for big potential improvements in performance with parallel
algorithms - most corpus have very ”sparse” dependencies, meaning that most parts of the corpus
only depend on a small amount of data, for example, words inside a single document might depend
on each other, but words in different documents might not have that tight correlation. In LDA, the
relationships between words in different documents don’t change much over the iterations of the
Gibbs sampling process. This would allow us to distribute the corpus and run sampling on different
processes with reasonable synchronization without influencing the classification result much.

3



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

Break down the workload. Where are the dependencies in the program? How much
parallelism is there? Is it data-parallel? Where is the locality? Is it amenable to
SIMD execution?

The bulk of the workload is in the generative Gibbs Sampling process for LDA. In fact, the Gibbs
Sampling process for LDA is strictly sequential as the result of the the re-sampled topic for one
word is factored into calculating the multi-nomial distribution of all the words sample afterwards.

However, as explained above, the major dependency of the algorithm is the distribution of top-
ics over words inside each document. Due to the sparse dependencies of words across different
documents, it is possible to sacrifice the relatively weak dependency for faster sampling, by al-
lowing multiple processes to perform the sampling process independently on different parts of the
training data for some time and then combining the results. Thus, is it naturally reasonable to
split up the training documents into roughly equal chunks and have different processes train on
different documents together in parallel. This is a form of message-passing model, as different
processes are assigned different parts of the training data (in their private memory spaces), and
need to communicate with each other regularly to obtain training results and update their own
parameters.

Lastly, we attempt to utilize cache locality by iterating through all tables in a row by row order
so that all memory accesses are close. We also assign documents to processes by block, so that
different processes only need to access documents stored near each other in memory. However, the
sizes of the tables prevent cache locality from being a huge impact on performance since many of the
rows in the tables excess the cache sizes of the GHC machine (which we tested on). Moreover, while
similar instructions are performed by each process for each word during the re-sampling process,
the fact that the process depends heavily on the randomness of the sampling causes divergence in
the work performed by each process. Thus, SIMD instructions are not ideal in this scenario. Thus,
in the end it seems most reasonable to use the message-passing model for parallelizing LDA.

Approach:

Describe the technologies used. What language/APIs? What machines did you target?

We used the OpenMPI library’s message passing interface to assign work to multiple processes
and communicate between different processes. We tested on the GHC machines, which allowed a
maximum of 16 hyper threaded parallel instances. We used the language C++ because C++ not
only provides libraries for us that helps with reading inputs, string manipulations and sorting but is
also compatible with C which we mostly used for our parallel implementations. Most importantly
MPI supports both C and C++ and that both C and C++ are very efficient low-level programming
languages.

Describe how you mapped the problem to your target parallel machine(s). Important:
How do the data structures and operations you described map to machine concepts
like cores and threads. (or warps, thread blocks, gangs, etc.)

As mentioned in the background section, there are four tables that we need to learn as parameters
of the model - the doc-topic table, the word-topic table, the topic table, and the z table (topic

4



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

assignment table). Among the four tables, the doc-topic table and the z table could be parsed by
document, while the word-topic table and the topic table need to summarize across documents.

Since we parallelized the algorithm based on documents using blocked assignment, each process
only needs certain rows of the doc-topic table and the z table in order to perform local Gibbs
sampling. Similar to the GraphRats assignment, in order for simpler indexing, each process stores
the entire tables but only uses the rows assigned to it. Meanwhile, each process needs an updated
(or ”fairly” updated) copy of the entire word-topic table and topic table, and updates of these two
tables need to be communicated across processes using message passing.

In order to gather updates from different processes, we introduce two new tables in our parallel
implementation:

• Local Updates to Word-Topic Table (updateW), with the same dimensions as Word-Topic
Table

• Local Updates to Topic Table (updateT), with the same dimensions as Topic Table

Thus, each process still goes through the same sampling process as the sequential version - iterate
through each word in each document assigned to it, calculates the multi-nomial distribution of
topics over the word, randomly sample a topic from the distribution, and updates its own part of
the doc-topic table and the z table. Then each process stores the local updates to the word-topic
table and the topic table in its local updateW and updateT. After a certain number of iterations,
all processes send their local updates to the master, and the master accumulates the updates, adds
them to the old word-topic table and topic table, and then sends the new tables back to each
process.

5



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

Did you change the original serial algorithm to enable better mapping to a parallel
machine?

We did not make huge changes to the original serial algorithm when implementing the parallel
LDA algorithm. However, because the generative process of Gibbs Sampling is strictly sequential,
our parallel algorithm couldn’t ensure the exact calculations of the original serial algorithm. As
mentioned above, We split the training documents across all working processes, where each process
independently performs the same sampling process as the serial algorithm on its own documents.
Then, in order to make sure all the processes communicate learned information across each other,
we added a step where all processes report their updated tables to the master process, who compiles
all the updates and sends the updated tables to all other processes.

As explained above, only the word-topic table and topic table are updated by all processes and
these updates need to be communicated to all other processes. To communicate theses updates, we
modified the serial algorithm by using an updateW table and updateT table to store each process’s
update to the word-topic table and topic table. Thus, every time a process receives updated tables
from the master process, we clear the update tables to all zeros. Then, instead of decrementing
and incrementing the counts on the word-topic table and topic table, we record the changes to the
updateW and updateT tables and only send the updateW and updateT tables to master, who can
simply add up all updates from all processes to produce the overall updated word-topic and topic
tables. The use of the updateW and updateT tables are the only major change to the original
serial algorithm.

If your project involved many iterations of evaluation and optimization, please de-
scribe this process as well. What did you try that did not work? How did you arrive
at your solution? The notes youve been writing throughout your project should be
helpful here. Convince us you worked hard to arrive at a good solution.

We first implemented and optimized the sequential benchmark of the LDA algorithm (mostly from
scratch). Our first sequential implementation used vectors for 1-D tables and vectors of vectors for
2-D tables. We attempted to use vectors for its useful functionalities such as being able to get the
sizes. However, it turns out that vectors are very expensive to operate on. Also, vectors have bad
locality because it is not guaranteed that elements of neighboring indices in a vector are physically
stored in adjacent memory. In fact, after we switch to arrays from vector, we obtain a 1.5x to 2x
speedup on the sequential implementation.

Also, when sampling a new topic for some word w in document d, the sequential algorithm stores
an array of probabilities for each topic (as the posterior multi-nomial distribution) and then uses a
random number to determine which of the topics becomes the newly assigned topic for w. However,
a linear search was initially used in our basic algorithm to search through the probabilities array
for the new topic. We implemented binary search instead of linear search, hoping to speed up the
sampling process. However, while binary search is asymptotically faster, it is only efficient on large
arrays. In our algorithm we only search for at most the number of topics we train for, which is
often not a huge number. Thus, there was no speedup by using a binary search instead of a linear
search.

After we finished optimizing our sequential benchmark we started working on our first parallel
implementation, with the simple synchronization rule of synchronizing updates to the word-topic
table and the topic table across all processes at the end of every single iteration. We tried two ways
to implement it:

6



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

• IMPLEMENTATION A According to our ”send update” - ”receive new table” mechanism,
we used MPI Isend and MPI Irecv for the non-master branches at the end of each iteration
when all the local sampling is over. We used an MPI Waitall to make sure each process
receives a new copy of the tables before they proceed to the next iteration. The master uses
MPI Irecv to gather updates from all processes with an MPI Waitall (so that the order it
receives updates from processes doesn’t matter), and adds up all received updates to its own
copy of the tables. Then the master uses an MPI Isend to send the updates back to each
process, and keeps on running its own local Gibbs sampling.

• IMPLEMENTATION B Since the update gathering process is summing up the same
entries to the same table across different processes, we changed the synchronization process
at the end of each iteration from explicit MPI Isend and MPI Irecv in each process into
MPI Reduce using addition and MPI Broadcast, so that MPI Reduce gathers all updates
to master and master adds up the accumulated updates to its copy of the tables, and then
broadcast the tables back to each process.

We thought implementation A would be faster since implementation B introduces an implicit
barrier across all processes. However, it turned out that implementation B is faster - since in
implementation A, all processes still need to wait for master to finish accumulating all the updates,
it’s not much faster than adding a barrier to all processes. Also, implementation A performs all
the additions in master sequentially, which would be less efficient than MPI Reduce. Moreover,
since implementation A needs two large tables to store updates from all processes, the memory
consumption is extremely huge, while implementation B only needs two tables with the same
size as the update tables to store the accumulated updates, which makes implementation B more
economy in terms of memory usage. Thus, we decided to use implementation B.

Then we looked up more possible optimization of parallel LDA, and found that lots of papers
mentioned the concept of ”staleness” - in order to achieve more speedup, we allow the usage of
reasonably ”stale” data in some of the tables, so that each process can run local Gibbs sampling
for more iterations and less synchronization is needed.

In order to add the staleness feature, we added a counter in our synchronous implementation of
parallel LDA (implementation B) and determines whether or not we need synchronization at each
iteration. If not, we just keep on running local Gibbs sampling.

With the concept of staleness in mind, we thought that while synchronized updates work well for

7



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

a small staleness value, a large staleness value could result in possibly unbalanced workload. For
example, some process x may take 0.001 secs faster to compute 1 iteration than process y so a
staleness of 2 would only leave process x waiting for 0.002 secs to synchronize, while a staleness of
1000 would leave process x waiting for 1 total second for process y during synchronization. Hoping
to optimize this problem, we attempted to implement asynchronous updates on multiple processes.
In contrast to our previous synchronous version, during the synchronization phase after every s
iterations (where s is the staleness), the asynchronous version does not require each process to
obtain a copy of the new table after they send the updates to master, but instead directly starts
with the next round of sampling, and updates the tables upon receiving the new tables (which
could be after they start with the next s iterations of sampling).

We also tried two ways to do this:

• IMPLEMENTATION C We attempted to use non-blocking message passing in this imple-
mentation. For each non-master process, for every s iterations that it finishes (s = staleness),
it uses MPI Isend to send its own updates to the master process and then uses MPI Irecv
with a MPI Waitall to receive updated tables form the master process before it proceeds. For
the master process, for every s iterations it finishes, it first updates the tables with its own
updates, and then uses a while loop to probe for incoming messages. Within the while loop,
the is a for loop constantly probing from process 1 to process p, in that order. MPI Iprobe
is used for non-blocking probing and whenever a message is found, the master process will
use MPI Recv to receive that message, update the tables and then send the updated tables
back to the process that sent the message. The master will continue this process until it has
counted to have received 2 messages updates from each worker process.

• IMPLEMENTATION D We then realized that while work processes benefit the most
from the asynchronous implementation above, the master process must wait to process all
updates before it can proceed. Thus, it seems useless to use a while loop that keeps looping
and using non-blocking probe since the master must wait until it finds a message from any
of the worker processes. Thus, in this implementation, instead of a while loop we uses a for
loop for 2 ∗ (p− 1) iterations to make sure all processes have been communicated with (p =
number of processes). And in each iteration, we use MPI Probe to look for messages from
any worker process, and then retrieve the tag and source from the status of the probing to
determine which process the message came from and which of the 2 tables it is sending. Then
master updates its tables just like before and sends out the updated tables.

We initially wrote implementation C as it was simpler in terms of identifying the source and type of
update message - when a message is probed, the source and type of message are definite. However,

8



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

this even decreases the speedup compared to the synchronous version. Thus we wrote implemen-
tation D, and it turned out that implementation D was faster because it removes the costly while
loop and the constant probing - whenever master sees an incoming message, no matter where it’s
from and which table the update is relevant to, it receives the message and processes the update.
Since the computations after a message is received are the same for the two implementations, im-
plementation D is overall faster with a faster probing method. Thus, we chose implementation D
as our asynchronous version of parallel LDA implementation.

If you started with an existing piece of code, please mention it (and where it came
from) here.

The LDA algorithm was briefly discussed in another class we’ve taken. We referred to lecture
materials and pseudocode from relevant papers when writing our own implementation of the LDA
algorithm (both the sequential and the parallel versions) from scratch but did not use code from
any other sources.

Results:

Overall, we consider ourselves to be fairly successful at achieving our goals. We were able to see
significant speedup with the use of multiple processors. We will discuss the specifics of how we
evaluated the performance of our parallel algorithms below.

If your project was optimizing an algorithm, please define how you measured perfor-
mance. Is it wall-clock time? Speedup? An application specific rate? (e.g., moves per
second, images/sec)

The goal of our project is to optimize a parallel version of the LDA algorithm. Therefore, we mea-
sured the wall-clock time of our optimized sequential LDA algorithm and used this time as a basis
for calculating speedup for our parallel algorithms. For our parallel LDA algorithms, we measured
the wall-clock time of running the entire program, excluding time for calculating log-likelihood for
evaluation purposes. We used the wall-clock time to calculate the speedup compared to the se-
quential implementation, in order to determine the overall performance of our parallel optimization.

Please also describe your experimental setup. What were the size of the inputs? How
were benchmark data generated?

We experimented with the 20 News data set, which is composed of 18774 documents (pieces of
news) that belong to 20 different topics. This document set had a total of 60057 unique words and
the total length of all documents is 1414350. For our experimental purpose, we used 0.1 for both
alpha and beta during training.

As mentioned above, we used wall-clock time of running the sequential program to generate the
benchmark to evaluate the performance of our parallel algorithms. We tested the performance with
different values of the three parameters below:

• Number of iterations: the total number of iterations through the entire document set to train
for.

9



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

• Staleness: the staleness parameter used in parallel LDA that determine how often synchro-
nization is performed between the master and worker processes.

• Number of processes: The number of processes used in training, ranging from 1 (sequential)
to 16.

When evaluating the performance of our parallel program, we first experimented with the effect of
the number of processes on the speedup of the parallel programs. To do this, we used 10000 iteration
and a staleness of 100, and trained (on the documents set described above) using 2 processes all
the way through 16 processes. We performed this with both the synchronized approach and the
asynchronous approach.

Next, as explained above, we thought that staleness may also affect the speedup of our parallel
algorithms, especially for the asynchronous algorithm. Therefore, using 16 processors training for
10000 iterations, we trained using staleness at 20, 50, 100, 200, 500, and 1000. We also ran these
experiments on both the synchronous and asynchronous algorithms.

For both of these experiments, we used the speedup as the main measurement of how optimized our
parallel implementations are over the serial algorithm. We will be presenting graphs and discuss
the speedups we obtained in the next sections. We also recorded the log-likelihood together with
the run-time for every experiment mentioned above, since as mentioned before, the parallel LDA
algorithm does not strictly follow the sequential order of the serial algorithm and therefore we must
measure the accuracy of the parallel LDA algorithms while aiming to achieve a high speedup. This
will also be further discussed in the next section.

Provide graphs of speedup or execution time. Please precisely define the configura-
tions being compared. Is your baseline single-threaded CPU code? It is an optimized
parallel implementation for a single CPU?

Before we analyze the speedup, in order to show that our parallel implementation still achieves a
good result in terms of the objective function and does not sacrifice log-likelihood much, we plotted
the convergence of the sequential program and the two implementations of our parallel algorithm
as below.

10



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

We can see that both of the parallel programs converge slightly slower than the sequential version,
but still achieve reasonable log-likelihood after a number of iterations - the sequential version
eventually gets to a log-likelihood of around -1.3e7, while both of the parallel programs eventually
arrive at log-likelihood of around -2.1e7 to -2.2e7. When we printed out the most frequent words
in each category at the end of the programs, the result we got from both parallel programs still
made sense. These results show that parallelism indeed sacrifices a bit of the objective function,
but does not harm the training result much.

As explained in the section above, our baseline is our sequential implementation of LDA algorithm
run on the CPU, while our parallel algorithms runs on the CPU as well but using multiple processes
from multiple cores. Below are the graphs and results we found from the experiments described in
the section above.

The graph on the left above is the result of the first experiment, where we explored the scalability
of our parallel algorithms by investigating how the speedup of the algorithms scale with the number
of processes used.

As shown, for both the synchronous version and asynchronous version we were able to see a closet o-
linear speedup up until 6-8 processes. And even though the speedup is no longer linear afterwards,
we still see a 9x speedup using 16 processes. This pattern is expected because as the number
of processes increases, communication becomes more prominent and takes a larger portion of the
run time. Moreover, it could also be possible that when running with more than 8 processes,
the performance of hyper-threads instead of physically separate cores are much lower, lowering the
overall speedup we are seeing. Also, while we expected the asynchronous version to be slightly faster
than the synchronous version, due to compensation for work imbalance, it turned out that both
implementation yielded very similar speedups. This is because the workload could have been mostly
balance for both versions, and that even though the asynchronous implementation allows workers
processors to only wait for no process other than the master, the master process is loaded with
extra work for communication between processes as master needs to separately receive and send 2
messages to every worker process during a synchronization update. This causes the asynchronous
implementation to really have no significant improvement over the synchronized implementation, in
which we used MPI Reduce and MPI Bcast which are very efficient built-in communication tools.

The graph on the right above shows the converged log-likelihood values vs. the number of processes
used during training, for 10000 iterations. It can be seen that the log-likelihood for fewer processes
are lower than the log-likelihood for training that used more processes. This is also expected due
to the nature of the parallelized algorithm. As explained many time above, our parallel algorithms
was not able to fully follow the computation for the serial algorithm because the serial algorithm
is strictly sequential. Therefore, having each process train different document separately decreases

11



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

the training accuracy, which is why we see a lower log-likelihood value after the same number of
iterations of training. However, this does not impact the correctness of the parallel algorithms.

The two graphs above here are results of our second experiment, where we experimented on the
relationship between speedup and staleness. As mentioned, staleness controls how often synchro-
nization happens for our parallel algorithms. As show in the graph on the left, both the synchronous
and asynchronous implementations show an obvious increase in speedup due to increased staleness.
This shows larger staleness does decrease the overall communication time, leading to better per-
formance.

We also recorded the log-likelihood values vs. staleness. This is because we expected larger stal-
eness to cause a lower log-likelihood value due to the less communication of information between
different processes. Staleness does have an impact when it comes to extreme conditions when
we set the staleness to be equal to the number of iterations (using staleness of 10000 for 10000
iterations), i.e. we only synchronize at the end of the entire training process - the log-likelihood
decreases to around -3.4e7 for the synchronous version and decreases to around -3.7e7 for the asyn-
chronous version. However, as plotted above, it seems that with relatively small staleness, for both
synchronous and asynchronous implementations, the log-likelihood values are rather consistent.
These results indicate that while staleness may increase the performance (speedup) of the parallel
algorithms, it does not have a huge impact on the accuracy of the training algorithm, which is great.

Recall the importance of problem size. Is it important to report results for different
problem sizes for your project? Do different workloads exhibit different execution
behavior?

Since there are a lot of different parameters involved and to be experimented with in our parallel
LDA algorithm (for example, the log-likelihood, the staleness, the number of iterations, etc.), our
main focus of experiment was the influence of these parameters on the speedup and log-likelihood
of the training process. Thus, we chose to stick with the single data set of 20News and did not test
much with different problem sizes.

Also, in text classification, it’s generally hard to have convincing classification results with data
sets that are too small, so the training data sets are typically very large (in our case, with 18774
documents and a total of 1414350 words in the corpus). Thus, we can claim that our algorithm
achieves a good speedup for a large data set.

12



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

Important: What limited your speedup? Is it a lack of parallelism? (dependencies)
Communication or synchronization overhead? Data transfer (memory-bound or bus
transfer bound). Poor SIMD utilization due to divergence? As you try and an-
swer these questions, we strongly prefer that you provide data and measurements to
support your conclusions. If you are merely speculating, please state this explicitly.
Performing a solid analysis of your implementation is a good way to pick up credit
even if your optimization efforts did not yield the performance you were hoping for.

Since we used message passing among different processes and the messages to be passed are rela-
tively long, our main bottleneck was the communication time (including the computations involved
in accumulating updates in the MPI Reduce). With larger number of processes, the number of
messages to be passed increases and the process of accumulating updates from multiple processes
also gets more computation intensive.

As shown in the figure above, we timed the local Gibbs sampling part of each program as well as
the synchronization part. We found that, as the number of processes increases, the proportion of
time spent on gathering updates get substantially larger, from 3% with 2 processes to around 60%
with 16 processes. With the use of MPI Reduce, it’s relatively hard to separate the time spent
on message passing itself and the time spent on accumulating the numbers, but our assumption
is that as the number of processes go up, accumulating updates from different processes also gets
more computation intensive, thus leading to longer synchronization time.

Also, as we discussed before, the sequential nature of Gibbs sampling itself prevents more paral-
lelism to be involved - at each iteration of Gibbs sampling, we still need to sequentially go through
the sampling process of each learned parameter.

13



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

Deeper analysis: Can you break execution time of your algorithm into a number of
distinct components. What percentage of time is spent in each region? Where is there
room to improve?

As discussed in the section above, we timed the part our program spent on local Gibbs sampling
and on gathering updates to the parameters from different processes. According to our reported
breakdown of computation and communication time above, as the number of processes go up, the
proportion of time spent on communicating between processes and gathering updates gets much
larger, from 3% with 2 processes to around 60% with 16 processes.

The work imbalance would also be a bottleneck when master takes on more computations in gath-
ering the results. As we researched different possible designs of parallelism for LDA, we’ve also
seen algorithms in which each process sends the updates to another random process (instead of
the master) - due to time limitations, we weren’t able to implement this algorithm, which might
further improve speedup but would also converge much slower and sacrifice the log-likelihood even
more.

Was your choice of machine target sound? (If you chose a GPU, would a CPU have
been a better choice? Or vice versa.)

We chose to test our parallel implementation and experiments on the GHC machine clusters. This
choice is very reasonable and convenient because our implementation requires machines that have
MPI installed and supports a good number of parallel processes. The GHC machines have MPI
and each machine has 8 cores where each core has 2 hyper-threads. This allows us to test anywhere
up to 16 parallel processes for our algorithm.

However, a downside of testing on the GHC machines is that run time on the GHC machines
could vary greatly depending on how much of the machine’s CPU is in use by other users. We’ve
noticed some inconsistencies when timing our experiments. However, we were able to overcome
this by running our experiments multiple times and only taking the most common results that we
get. However, this issue could have been avoided if we tested on the Latedays cluster using the
full power of one of the worker nodes at the cost of lower speedup due to the limited computation
power of Latedays clusters.

We chose to run this on a CPU because we chose to implement the parallel algorithm using the
message-passing model, which involves multiple processes and different computations on different
processes. Our worker processors must communicate information to each other throughout the
algorithm and we need to be able to control how and what is communicated, so SIMD is not a
good option for our algorithm. Thus, we do not think implementing this using a GPU would be
better.

14



15-418
Angelica Feng, Judy Kong

zhixinf/junhank@andrew.cmu.edu

References:

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. ”Latent dirichlet allocation.” Journal of
machine Learning research 3.Jan (2003): 993-1022.

Newman, David, et al. ”Distributed algorithms for topic models.” Journal of Machine Learning
Research 10.Aug (2009): 1801-1828.

Smyth, Padhraic, Max Welling, and Arthur U. Asuncion. ”Asynchronous distributed learning of
topic models.” Advances in Neural Information Processing Systems. 2009.

A. Ihler and D. Newman, ”Understanding Errors in Approximate Distributed Latent Dirichlet
Allocation,” in IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 5, pp. 952-
960, May 2012.

N. Besimi, B. io and A. Besimi, ”Overview of data mining classification techniques: Traditional
vs. parallel/distributed programming models,” 2017 6th Mediterranean Conference on Embedded
Computing (MECO), Bar, 2017, pp. 1-4.

Division of Work:

Equal work was performed by both project members.

15


