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INTRODUCTION IMPLEMENTATION DISCUSSION

Latent Dirichlet Allocation (LDA) is a widely used
algorithm in text classification, which clusters word
occurrences into latent classes (i.e. topics) after
iterations of parameter learning. As the sampling process

We implemented two variations of parallelism LDA - the
synchronous version and the asynchronous version. We
also added staleness in our implementation.

= How does the parallelism scale

Close to linear speedup until ~6 procs, gets smaller
after but still achieves 9x with 16 procs.
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sometimes might decrease the objective function
(log-likelihood) as a tradeoft.

= Speedup comparison of sync vs. async

We expected async version to be faster, but since
there’s not much work imbalance in sync version,
and for async the master takes on more work

7 Clock  Figure 5. Asynchronous Parallel LDA
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Figure 4, Synchronous Parallel LDA master afterg iters, keep on Samp[ing,

(updates broadcasted to all processes) and updates upon receiving new table)

RESULT

METHOD

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these zrants an act
every bit as important as our traditional areas of support in health, medical research. education
and the social services.” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200.000 for its new building. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
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OO0 process, the speedup for both are about the same.
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| CONCLUSION

Figure 1. (above) LDA’s view of a document 21000000.0000 |
Figure 2. (right) LDA as a graphical model D _ _ .. .
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I sequential version. For future work, better asynchronous

I update rules might be designed for better work balance to
! further improve performance.
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Parse corpus into small corpuses
that can run on each process
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Figure 6. Log-Likelihood vs. # of Processes  Figure 7. Speedup vs. # of Processes
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processes and broadcast updates
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