
Text Classification with Parallel Latent Dirichlet Allocation
Angelica Feng, Judy Kong

INTRODUCTION

METHOD

RESULT

CONCLUSION

REFERENCE

DISCUSSION
Latent Dirichlet Allocation (LDA) is a widely used
algorithm in text classification, which clusters word
occurrences into latent classes (i.e. topics) after
iterations of parameter learning. As the sampling process
is extremely computation-heavy for large data sets, we
implemented parallel LDA in this project and
experimented with its performance.

➡ How does the parallelism scale
Close to linear speedup until ~6 procs, gets smaller
after but still achieves 9x with 16 procs.

➡ Tradeoff between log-likelihood & speed
Learned parameters will be more “stale” as the
staleness gets larger. This gets us faster speed, but
sometimes might decrease the objective function
(log-likelihood) as a tradeoff.

➡ Speedup comparison of sync vs. async
We expected async version to be faster, but since
there’s not much work imbalance in sync version,
and for async the master takes on more work
updating the tables based on messages from each
process, the speedup for both are about the same.

Our implementation of parallel Latent Dirichlet Allocation
achieves an overall good speedup compared to the
sequential version. For future work, better asynchronous
update rules might be designed for better work balance to
further improve performance.

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent
dirichlet allocation." Journal of machine Learning research 3.Jan
(2003): 993-1022.
Newman, David, et al. "Distributed algorithms for topic models."
Journal of Machine Learning Research 10.Aug (2009): 1801-1828.
10-605 Lecture Notes by William W. Cohen

IMPLEMENTATION
We implemented two variations of parallelism LDA - the
synchronous version and the asynchronous version. We
also added staleness in our implementation.

Figure 3. (left)

Parallel LDA
workflow: split
corpus by
document; each
process runs local
Gibbs sampling;
master gathers
updates and send
back to each
process

Figure 4. Synchronous Parallel LDA
(updates broadcasted to all processes)

Figure 1. (above) LDA’s view of a document
Figure 2. (right) LDA as a graphical model

Figure 5. Asynchronous Parallel LDA
(each process send local updates to
master after s iters, keep on sampling,
and updates upon receiving new table)

Figure 6. Log-Likelihood vs. # of Processes Figure 7. Speedup vs. # of Processes

Figure 8. Log-Likelihood vs. Staleness Figure 9. Speedup vs. Staleness

