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Latent Dirichlet Allocation (LDA) is a widely used 
algorithm in text classification, which clusters word 
occurrences into latent classes (i.e. topics) after 
iterations of parameter learning. As the sampling process 
is extremely computation-heavy for large data sets, we 
implemented parallel LDA  in this project and 
experimented with its performance.

➡ How does the parallelism scale
Close to linear speedup until ~6 procs, gets smaller 
after but still achieves 9x with 16 procs.

➡ Tradeoff between log-likelihood & speed
Learned parameters will be more “stale” as the 
staleness gets larger. This gets us faster speed, but 
sometimes might decrease the objective function 
(log-likelihood) as a tradeoff.

➡ Speedup comparison of sync vs. async
We expected async version to be faster, but since 
there’s not much work imbalance in sync version, 
and for async the master takes on more work 
updating the tables based on messages from each 
process, the speedup for both are about the same.

Our implementation of parallel Latent Dirichlet Allocation 
achieves an overall good speedup compared to the 
sequential version. For future work, better asynchronous 
update rules might be designed for better work balance to 
further improve performance.
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IMPLEMENTATION
We implemented two variations of parallelism LDA - the 
synchronous version and the asynchronous version. We 
also added staleness in our implementation.

Figure 3. (left)

Parallel LDA 
workflow: split 
corpus by 
document; each 
process runs local 
Gibbs sampling; 
master gathers 
updates and send 
back to each 
process

Figure 4. Synchronous Parallel LDA 
(updates broadcasted to all processes)

Figure 1. (above) LDA’s view of a document
Figure 2. (right) LDA as a graphical model

Figure 5. Asynchronous Parallel LDA 
(each process send local updates to 
master after s iters, keep on sampling, 
and updates upon receiving new table)

Figure 6. Log-Likelihood vs. # of Processes Figure 7. Speedup vs. # of Processes

Figure 8. Log-Likelihood vs. Staleness Figure 9. Speedup vs. Staleness


